- PS 156 Frederick Law Olmsted
- 7th Grade Common Core
Mr. Miller's Mathematics Site
- My Home Page
- About Me
- Student Resources
-
Staff Resources
- 5th Grade Common Core
- 6th Grade Common Core
- 7th Grade Common Core
- 7th Grade Advanced Common Core
- 8th Grade Common Core
-
7th Grade Resources pre Common Core
- Inequalities
- Filling and Wrapping
- Looking for Pythagoras
- What Do You Expect?
- Prime Factorizations, GCF, LCM, Angles of Quad and
- Circle, Bar, and Line Graphs
- Review Topics
- Comparing and Scaling
- NYS Exam Review Sheets by Topic
- NYS Exam Review Packets
- NYS Exams
- Video Tutor for 7th grade
- Variables and Patterns
- Accentuate the Negative
- Solving Equations
- Scientific Notation
- Square Roots
- Exponents
- Evaluating Expressions
-
8th Grade Resources pre Common Core
- Review topics
- NYS Review Sheets by Topic
- NYS Exam Review Packets
- NYS Exams
- Video Tutor for 8th grade
- Moving Straight Ahead
- Parallel Lines and Angles
- Polynomials and Monomials
- Thinking with Mathematical Models
- Frogs, Fleas, and Painted Cubes
- Kaleidoscopes, Hubcaps, and Mirrors
- Say It With Symbols
- Shapes of Algebra
- Algebra 2
-
Algebra
- Module 1
- Module 2
- Module 3
- Module 4
- Module 5
- Common Core Exam Questions by Standard
- NYS Common Core Algebra Exams
- Algebra Common Core Exams Answers and Model Sets
- NYS Integrated Algebra Exams and Answer Keys
- Integrated Algebra Review sheets by topics
- Standardized Test Practice
- Algebra Review Games
- Brain Pop videos
- Multi language Glossary
- Geometry
- Math Online Dictionary
- Parent & Student Resources for 5th to 8th grade
- Parent and Student Resources for Algebra
- Precalculus (Common Core)
- My Links
- Math in Movies
- Real Math and Science Careers
Module 3
-
Grade 7 Module 3: Expressions and Equations
This module consolidates and expands upon students’ understanding of equivalent expressions as they apply the properties of operations to write expressions in both standard form and in factored form. They use linear equations to solve unknown angle problems and other problems presented within context to understand that solving algebraic equations is all about the numbers. Students use the number line to understand the properties of inequality and recognize when to preserve the inequality and when to reverse the inequality when solving problems leading to inequalities. They interpret solutions within the context of problems. Students extend their sixth-grade study of geometric figures and the relationships between them as they apply their work with expressions and equations to solve problems involving area of a circle and composite area in the plane, as well as volume and surface area of right prisms.
(Excerpt taken from NYS Engage website)NYS Engage Module 3 - link to all things related to Module 3, provided by NYSKhan academy sorted by lessons
Engage worksheets and Video Lessons for all lessons covered in Module
http://www.onlinemathlearning.com/common-core-math-worksheets-grade7.html
Important Vocabulary (taken from lesson 1 of the module):Variable: A variable is a symbol (such as a letter) that represents a number, i.e., it is a placeholder for a number.Numerical Expression: A numerical expression is a number, or it is any combination of sums, differences, products, or divisions of numbers that evaluates to a number.
Value of a Numerical Expression: The value of a numerical expression is the number found by evaluating the expression.
Expression: An expression is a numerical expression, or it is the result of replacing some (or all) of the numbers in a numerical expression with variables.
Equivalent Expressions: Two expressions are equivalent if both expressions evaluate to the same number for every substitution of numbers into all the letters in both expressions.
An Expression in Expanded Form: An expression that is written as sums (and/or differences) of products whose factors are numbers, variables, or variables raised to whole number powers is said to be in expanded form. A single number, variable, or a single product of numbers and/or variables is also considered to be in expanded form. Examples of expressions in expanded form include: 324, 3x, 5x + 3 - 40, etc.
Term: Each summand of an expression in expanded form is called a term. For example, the expression 2x + 3x + 5 consists of 3 terms: 2x, 3x, and 5.
Coefficient of the Term: The number found by multiplying just the numbers in a term together. For example, given the product 2 * x * 4, its equivalent term is 8x. The number 8 is called the coefficient of the term 8x.
An Expression in Standard Form: An expression in expanded form with all its like terms collected is said to be in standard form. For example, 2x + 3x + 7 is an expression written in expanded form; however, to be written in standard form, the like terms 2x and 3x must be combined. The equivalent expression 5x + 7 is written in standard form.
Important Vocabulary (taken from Lesson 7 of the module):
Equation: An equation is a statement of equality between two expressions.
If A and B are two expressions in the variable x, then A = B is an equation in the variable x.
Students sometimes have trouble keeping track of what is an expression and what is an equation. An expression never includes an equal sign (=) and can be thought of as part of a sentence. The expression 3 + 4 read aloud is, “Three plus four,” which is only a phrase in a possible sentence. Equations, on the other hand, always have an equal sign, which is a symbol for the verb “is.” The equation 3 + 4 = 7 read aloud is, “Three plus four is seven,” which expresses a complete thought, i.e., a sentence.
Number sentences—equations with numbers only—are special among all equations.
Number Sentence: A number sentence is a statement of equality (or inequality) between two numerical expressions.
A number sentence is by far the most concrete version of an equation. It also has the very important property that it is always true or always false, and it is this property that distinguishes it from a generic equation. Examples include 3 + 4 = 7 (true) and 3 + 3 = 7(false). This important property guarantees the ability to check whether or not a number is a solution to an equation with a variable: just substitute a number into the variable. The resulting number sentence is either true or it is false. If the number sentence is true, the number is a solution to the equation. For that reason, number sentences are the first and most important type of equation that students need to understand.