Polyatomic Ions and Their Charges – Honors Chem | +1 Charge | | | | | | | |----------------------------|--|---------|------------------|--------------------|---|--| | *ammonium | NH ₄ ⁺¹ | | mercury (I) | | Hg_2^{+2} | | | hydronium | H ₃ O ⁺¹ | | , (, | | 0- | | | | | | | | | | | | | -1 Char | ge | | | | | *acetate | $C_2H_3O_2^{-1}$ | | hydrogen sulfide | | HS ⁻¹ | | | aluminate | AIO_2^{-1} | | hydrogen sulfite | | HSO ₃ -1 | | | amide | NH_2^{-1} | | *hydroxide | | OH ⁻¹ | | | azide | N_3^{-1} | | hypobromite | | BrO ⁻¹ | | | benzoate | C ₆ H ₅ COO ⁻¹ | | hypochlorite | | CIO ⁻¹ | | | *bicarbonate | HCO₃ ⁻¹ | | hypoiodite | | IO ⁻¹ | | | bisulfite | HSO ₃ -1 | | iodate | | 10_3^{-1} | | | bromate | BrO ₃ -1 | | iodite | | 10_{2}^{-1} | | | borohydride | BH_4^{-1} | | lactate | | $C_3H_5O_3^{-1}$ | | | *chlorate | CIO ₃ -1 | | *nitrate | | NO ₃ -1 | | | chlorite | CIO ₂ -1 | | *nitrite | | NO ₂ ⁻¹ | | | chromite | CrO ₂ -1 | | perbromate | | BrO ₄ -1 | | | cyanate | OCN ⁻¹ | | *perchlorate | | CIO ₄ -1 | | | *cyanide | CN ⁻¹ | | periodate | | IO ₄ -1 | | | dihydrogen phosphate | H ₂ PO ₄ -1 | | *permanganate | | MnO ₄ -1 | | | dihydrogen phosphite | $H_2PO_3^{-1}$ | | sorbate | | $C_6H_7O_2^{-1}$ O_2^{-1} | | | formate | HCOO ⁻¹ | | superoxide | | O_2^{-1} | | | glutamate | $C_5H_8NO_4^{-1}$ | | thiocyanate | | SCN ⁻¹ | | | *hydrogen carbonate | HCO ₃ -1 | | triiodide | | l ₃ -1 | | | hydrogen sulfate | HSO ₄ -1 | | vanadate | | VO_3^{-1} | | | | | | | | | | | | | -2 Char | | | - | | | * carbonate | CO ₃ -2 | | * peroxide | | O_2^{-2} | | | carbide | C_2^{-2} | | peroxydisulfate | | $S_2O_8^{-2}$ | | | * chromate | CrO ₄ -2 | | phthalate | | $C_8H_4O_4^{-2}$ | | | dichromate | Cr ₂ O ₇ -2
S ₂ -2 | | selenate | | SeO ₄ -2 | | | disulfate | S_2^{-2} | | silicate | | SiO ₃ -2 | | | hexafluorosilicate | SiF ₆ ⁻² | | * sulfate | | SO ₄ -2 | | | hydrogen phosphate | HPO ₄ -2 | | * sulfite | | SO ₃ -2 | | | hydrogen phosphite | HPQ ₃ -2 | | tartrate | | $C_4H_4O_6^{-2}$ | | | imide | NH ⁻¹ | | tellurate | | TeO ₄ -2 | | | manganate | MnO ₄ -2 | | tetraborate | | $B_4O_7^{-2}$ | | | metasilicate | SiO ₃ ⁻² | | thiosulfate | | $S_2O_3^{-2}$ | | | molybdate | MoO_4^{-2} | | tungstate | | WO ₄ -2 | | | monohydrogen phosphate | HPO ₄ -2 | | zincate | | ZnO_2^{-2} | | | oxalate | $C_2O_4^{-2}$ | | | | | | | -3 Charge | | | | | | | | arsenate | AsO_4^{-3} | | hypophosphite | PO ₂ -3 | | | | arsenite | AsO_3^{-3} | | * phosphate | | PO ₄ -3 | | | borate | BO ₃ -3 | | phosphite | | PO ₃ -3 | | | citrate | C ₆ H ₅ O ₇ ⁻³ | | | | | | | | 0:0 -4 | -4 Char | • | | D 0 -4 | | | orthosilicate | SiO ₄ -4 | | pyrophosphate | | P ₂ O ₇ ⁻⁴ | | | | | Г OI- | | | | | | Audio a la corta a corta d | D O -5 | -5 Char | ge | | | | | tripolyphosphate | P ₃ O ₁₀ ⁻⁵ | | | | | | | | | | | | | | ^{*} means that they're pretty common / important ones...You'll be expected to know these ## A rule or two about polyatomic ions From –ate...adding an oxygen makes per--ate...taking away an oxygen (from the original –ate) makes -ite...taking away another oxygen makes hypo--ite... CIO⁻¹ An example: hypochlorite CIO_2^{-1} chlorite CIO₃-1 CIO₄-1 Base ion \rightarrow chlorate perchlorate Taking an –ate and adding hydrogen to it makes "hydrogen –ate" and adds +1 to the charge...adding another hydrogen makes "dihydrogen -ate" and adds another +1 to the charge...(also works for -ite's becoming "hydrogen –ite" or "bi--ite" by adding one hydrogen or "dihydrogen –ite" by adding two hydrogens)... PO_4^{-3} An example: phosphate HPO₄-2 hydrogen phosphate (sometimes called "biphosphate") H₂PO4⁻¹ dihydrogen phosphate ## **Common Multivalent Metals** (more complete chart at http://www.phs.princeton.k12.oh.us/Departments/science/ldusch/multivalent.html) | Stock System | Old Name | Symbol | |----------------|-----------|------------------| | cobalt (II) | cobaltous | Co ⁺² | | cobalt (III) | cobaltic | Co ⁺³ | | chromium (II) | chromous | Cr ⁺² | | chromium (III) | chromic | Cr ⁺³ | | copper (I) | cuprous | Cu ⁺¹ | | copper (II) | cuprous | Cu ⁺² | | iron (II) | ferrous | Fe ⁺² | | iron (III) | ferric | Fe ⁺³ | | lead (II) | plumbous | Pb ⁺² | | Stock System | Old Name | Symbol | |----------------|-----------|------------------| | lead (IV) | plumbic | Pb+4 | | manganese (II) | manganous | Mn ⁺² | | manganese (IV) | manganic | Mn ⁺⁴ | | mercury (I) | mercurous | Hg_2^{+2} | | mercury (II) | mercuric | Hg ⁺² | | nickel (I) | nickelous | Ni ⁺¹ | | nickel (II) | nickelic | Ni ⁺² | | tin (II) | stannous | Sn ⁺² | | tin (IV) | stannic | Sn ⁺⁴ | | by charges | The polyatomic ions you need to know | alphabetically | |-------------------------|--|----------------| | DV CHAIU U S | THE DOIVALUITIC TOTIS YOU HEED TO KNOW | aibhabellcailv | | ammonium | NH_4^{+1} | |--|--| | acetate bicarbonate chlorate cyanide hydrogen carbonate hydroxide nitrate nitrite perchlorate permanganate | C ₂ H ₃ O ₂ ⁻¹
HCO ₃ ⁻¹
CIO ₃ ⁻¹
CN ⁻¹
HCO ₃ ⁻¹
OH ⁻¹
NO ₃ ⁻¹
NO ₂ ⁻¹
CIO ₄ ⁻¹
MnO ₄ ⁻¹ | | carbonate
chromate
peroxide
sulfate
sulfite | CO ₃ ⁻²
CrO ₄ ⁻²
O ₂ ⁻²
SO ₄ ⁻²
SO ₃ ⁻² | | phosphate | PO ₄ -3 | | acetate | $C_2H_3O_2$ | |--------------------|---| | ammonium | NH_4^{+1} | | bicarbonate | HCO ₃ -1
CO ₃ -2 | | carbonate | | | chlorate | CIO ₃ -1 | | chromate | CrO ₄ -2 | | cyanide | CN ⁻¹ | | hydrogen carbonate | HCO ₃ -1 | | hydroxide | OH ⁻¹ | | nitrate | NO_3^{-1} | | nitrite | NO_2^{-1} | | perchlorate | CIO ₄ -1 | | permanganate | MnO_4^{-1} | | peroxide | O_2^{-2} | | phosphate | PO ₄ -3 | | sulfate | SO ₄ -2 | | sulfite | SO ₃ -2 | | | |