NYS COMMON CORE MATHEMATICS CURRICULUM

Lesson 5

8.1

Lesson 5: Negative Exponents and the Laws of Exponents

Classwork

Definition: For any positive number x and for any positive integer n, we define $x^{-n} = \frac{1}{x^n}$. $\int_{-\infty}^{\infty} \frac{1}{5^3} dx$

Note that this definition of negative exponents says x^{-1} is just the reciprocal, $\frac{1}{x}$, of x.

As a consequence of the definition, for a positive x and all integers b, we get

$$\chi^{-b} = \frac{1}{x^b}.$$

Exercise 1

Verify the general statement $x^{-b} = \frac{1}{x^b}$ for x = 3 and b = -5.

Exercise 2

What is the value of (3×10^{-2}) ?

Lesson 5: Date: Negative Exponents and the Laws of Exponents 5/23/14

engage^{ny}

5.17

Exercise 3

What is the value of (3×10^{-5}) ?

Exercise 4

Write the complete expanded form of the decimal 4.728 in exponential notation.

For Exercises 5-10, write an equivalent expression, in exponential notation, to the one given and simplify as much as possible.

Exercise 5

$$5^{-3} =$$

$$\frac{1}{99} = 8 - 9$$

Exercise 7

$$3 \cdot 2^{-4} =$$

Exercise 8

Let x be a nonzero number.

$$x^{-3} =$$

Exercise 9

Let x be a nonzero number.

$$\frac{1}{x^9} =$$

Exercise 10

Let x, y be two nonzero numbers.

$$xy^{-4} =$$

Negative Exponents and the Laws of Exponents

S.18